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ON THE ITERATIVELY REGULARIZED 
GAUSS-NEWTON METHOD 

FOR SOLVING NONLINEAR ILL-POSED PROBLEMS 

JIN QI-NIAN 

ABSTRACT. The iteratively regularized Gauss-Newton method is applied to 
compute the stable solutions to nonlinear ill-posed problems F(x) = y when 
the data y is given approximately by y3 with IyJ - yll < 6. In this method, 
the iterative sequence {x5 } is defined successively by 

c+= 4 - (cI + F-(4)*F/(4)>l (F/(x5) (F(4)-A Y) + ak (XA -X) 

where A: xo is an initial guess of the exact solution xt and {ak} is a 
given decreasing sequence of positive numbers admitting suitable properties. 
When x4 is used to approximate xt, the stopping index should be designated 
properly. In this paper, an a posteriori stopping rule is suggested to choose 
the stopping index of iteration, and with the integer k5 determined by this 
rule it is proved that 

14Xk -xtll < Cinf {IIXk-Xtil + 6 k = O, .... 

with a constant C independent of 6, where Xk denotes the iterative solution 
corresponding to the noise free case. As a consequence of this result, the 
convergence of x5 is obtained, and moreover the rate of convergence is derived 

when xo - xt satisfies a suitable "source-wise representation". The results 
of this paper suggest that the iteratively regularized Gauss-Newton method, 
combined with our stopping rule, defines a regularization method of optimal 
order for each 0 < v < 1. Numerical examples for parameter estimation of a 
differential equation are given to test the theoretical results. 

1. INTRODUCTION 

Nonlinear inverse problems exist in a wide variety of problems in science and 
engineering, and many examples can be found in the monographs and surveys 
by Tikhonov and Arsenin [21], Hofmann [12], Banks and Kunisch [2], Engl [5], 
Groetsch [10], and Vasin and Ageev [23]. Such problems can be written as the 
operator equations 

(1) F(x) = y, 
where F is a continuous and Frechet differentiable nonlinear operator with domain 
D(F) in the real Hilbert space X and with its range R(F) in the real Hilbert space 
Y, and y is attainable, i.e. y E R(F). We call problem (1) ill-posed if its solution 
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does not depend continuously on the right hand side y, which is often obtained by 
measurement and hence contains error. Let us assume that y5 is an approximate 
data of y and 

(2) Ily3 - YII < 6 

with a given noise level 6 > 0. Then the computation of the stable solution of (1) 
from y5 becomes an important topic of ill-posed problems, and the regularization 
techniques have to be taken into account. 

Tikhonov regularization is one of the best-known methods for solving nonlinear 
ill-posed problems, and it has received a lot of attention in recent years [20, 7, 19, 
13]. In this method, the solution x of the minimization problem 

(3) min {|1F(x) - Y3|2 + alx - xol;2} 
xED(F) 

is used to approximate the solution of (1), where a > 0 is the regularization param- 
eter and xo is an a priori guess of the desired solution xt of (1). Iterative approaches 
are attractive alternatives to Tikhonov regularization, and some of them, for in- 
stance, Landweber iteration [11] and the steepest descent method [18], have been 
suggested to solve nonlinear ill-posed problems. In 1992, Bakushinskii [1] proposed 
the following iterative approach, namely, the iteratively regularized Gauss-Newton 
method 

(4) 
6 = x-(YakI + F'(x5)*F'(x5))l (F'(x')*(F(x')-yy) + k(x - xo)) 

with an initial guess xo := xo E D(F) to obtain the stable approximate solutions 
to nonlinear ill-posed problems, where {ak} is a sequence satisfying 

(5) ak>O, 1< <r and lim ak 0 
ak+1 k-oo 

for some constant r > 1, F'(x) is the Frechet derivative of F at x E D(F) and 
F'(x)* is the adjoint of F'(x). For some background on this method, please refer 
to [1, 23]. The convergence of this method has been considered in several papers 
[1, 3, 23] under certain conditions on F, and the rates of convergence have been 
derived by enforcing some conditions on xo - xt. It has been shown that if there 
exist a 0 < v < 1 and an element w E A/(F'(xt))' C X such that 

(6) xO- xt = (F1(xt)*F'(xt))vw, 

then by choosing the integer N3 such that 

~+1 6 + 
aN2 < < ak2 0O< k<N, 

the rate of convergence of x5 to xt can be established. This stopping rule, however, 
is an a priori one since it depends on v, which is difficult to know in practice. 
Therefore a wrong guess of the smoothness on xo - xt will lead to a bad choice 
of N3, and consequently to a bad approximation to the exact solution xt of (1). 
Thus, this rule is of no practical interest, and an a posteriori criterion should be 
considered to choose the stopping index of iteration. 

An a posteriori stopping rule has been proposed in [3] for the iteratively reg- 
ularized Gauss-Newton method, and the stopping index of iteration n5 is chosen 
according to the discrepancy principle 

(7) JIF(x$6)-Y'll < cd < |IF(x')-y'll, 0 < k < ni, 
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with c > 1 chosen sufficiently large. Under certain conditions, the approximation 
property of x 6 has been studied, and it has been proved that 

(8) -xjj < 0(6f+2v) 

if xo-xt satisfies (6) with O < v < 2. Although they are interesting and useful, 
the results in [3] have the following disadvantages: 

* With the nr chosen from (7), one cannot expect to obtain a better rate than 
0(6112~~~~~~~~~~~~~~~~~~~~~~ 0(61/2) even if xo - xt satisfies (6) with some v> 2 

* The rates (8) were obtained under some conditions on F like 

F'(X) R(x, z)F'(z) + Q(x, z), 

(9) III -R(X, Z) || < CR, X , Z E B2P (XO), 

IIQ(x,z)ll < CQIIF'(xt)(x -Z) 

with p, CR and CQ sufficiently small. Unfortunately, for many important 
inverse problems arising in medical imaging and nondestructive testing, con- 
dition (9) seems to be difficult to verify or even to be false. 

Considering these aspects, it is natural to ask whether it is possible to give an 
a posteriori stopping rule yielding higher rates of convergence even under weaker 
conditions than (9). In this paper we try to answer this question. By making a 
comparison with Tikhonov regularization in Section 2, we find some similarities 
between these two methods. This observation leads us to propose a new rule for 
choosing the stopping index of iteration. With the index k3 chosen by our rule, 
we state some interesting results on x41, including the convergence and rates of 
convergence, under a mild assumption in Section 2. Some numerical examples are 
given in Section 3 to verify the theoretical results. The proofs of the main results are 
given in Section 5, which is based on an important inequality obtained in Section 4. 

2. THE STOPPING RULE AND MAIN RESULTS 

As explained in the introduction, an a posteriori rule for choosing the stopping 
index of iteration is necessary when one wants to apply the iteratively regularized 
Gauss-Newton method to practical problems. Perhaps the discrepancy principle 
(7), which is frequently used in iterative regularization methods, is a natural one. 
However, as claimed in [3], with the stopping index chosen by this rule, the best 
possible rate of convergence cannot exceed 0(61/2). So it is of interest to give an 
a posteriori rule yielding higher rates of convergence. To this end, let us compare 
Tikhonov regularization and the iteratively regularized Gauss-Newton method. If 
F is a linear bounded operator and xo = 0, then {x6} is defined successively by 

x61 = - 
(akcI + F*F)1 (F*(Fx - y3) + ak?X ). 

From this one can easily get 
= (akI + F*F)lF*y3, 

which indicates that x5 is nothing but the Tikhonov regularized solution corre- 
sponding to the regularization parameter a = ak with ak chosen properly [9]. 
When F is a nonlinear operator, x4 is no longer the Tikhonov regularized solu- 
tion, but we can conceive that there must exist some similarities between these 
two methods. Therefore it is helpful to recall the existing parameter choice strat- 
egy for Tikhonov regularization of nonlinear ill-posed problems. As we know, by 
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generalizing the idea developed in [8], Scherzer, Engl and Kunisch [19] proposed a 
rule to choose the regularization parameter for Tikhonov regularization of nonlinear 
ill-posed problems in 1993, and used the root a := a(6) of the equation 

(10) a (Fx6)-y, (aI+F'(x6)F'(x6)*)[ (F(x)- y6)) c62 

as the regularization parameter, and studied the convergence property of x 
Further study of this strategy was given in [13], and it was pointed out that (10) can 
be applied to many concrete problems. From the above observation, by adapting 
(10) we propose the following stopping rule for the iteratively regularized Gauss- 
Newton method. 

Rule 2.1. Let c > 1 be a given constant and x0 E D(F). Then choose k3 to be 
the first integer such that 

( 1) ak6 (F(xk6 )-y, (ak6I +?F(x66 )F'(x6 )*)l(F(xa6) y6)) < C62 

With the above chosen k3, we will use x6 to approximate the exact solution 
xt of (1). Before proceeding to argue the convergence behavior of x6, we have to 
show the justification of Rule 2.1. To do this, we need the following restriction on 
F, which has been carefully interpreted in [19]. 

Assumption 2.1. There is a number p > 31xo - xtHI such that Bp(xt) := {x E 
X: lx- xtII < p} C D(F). Moreover, there exists a constant Ko such that for 
each pair x, z E Bp(xt) and v E X there is an element h(x, z, v) E X such that 

(F'(x) - F'(z))v = F'(z)h(x, z, v), 

where 

11h(x, z, v) H< Ko 1xx - zH lvH. 

Now we can show that Rule 2.1 is well defined if c > 25 and 12Ko xo-xt < 1. -4- 

Obviously, all we have to do is to show that there is a finite integer k3 satisfying 
(11) if xo $ xt. By denoting by k3 the integer such that 

(12) ak? < 41xo xtHI2 
< ak, 0 < k < k6 

then we only need to prove that 

(13) 

ak, = ( (k F ) - a (k,i + F(x )F (xF )x ) (F(X ) - y6)) < C62. 

Let us first show that x6 is well defined for all integers 0 < k < k3 by induction. 
Suppose xk E Bp(xt) for some 0 < k < k3; then the definition of xk+1 gives 

x+l - = (akI + FI(x6)*FI(x6)) {ak(XO - Xt) + F/(x6)*(y6 -Y) 

(14) - F(x4)* (F(x4) - y - F'(x)( - xt)) } 
Since Assumption 2.1 implies 

(15) F(x6) - y - F'(x)(x- xt) = F'(x) j hIdt 
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with ha := h(xt + t(x - xt), x", x - xt) and If hdt <? llx6 _xt ll2, we have 
from (14) that 

llXk+ -xt < <Clak(aYkI + F/(x')*FF(x'))l'(xo - xt)1 + 2 
K 5 
2 t1xtI2 

From the definition of k3, since c > 25 we have for 0 < k < k3 - 4 
K lx -xt. 

(16) -X l ? 5 l_xo Xt 112 

By induction now we can prove if xo is so close to xt that Kollxo - xtl < rR with 
some rR < 28, then for all integers 0 < k < k3 

(17) lx - xt11 < 3 + 1-xt0| < 311xo xtll 

Therefore x4 is well-defined for all 0 < k < k3. To make the following discussion 
laconic, we introduce the abbreviations 

: = F'(x5)*F'/(x) and 13' := F'(x5)F'(x5)*. 

Now from (15) and (17), and noting that Kollxo - xtll ?< Tl:= 
' , it follows that 12' 

ajk < 6+ la,(a,6I+ 61)3(F(x~6) -y) 

< 6?+ /(1?+ Ko3 -xtll lxa -Xt 

< +10(1 + 577/(3 + V/ - 3F77)) Vc - 1 ? 
< 6 3+ V9-30j7 2 6 

Therefore Rule 2.1 is well defined, and for the integer k3 determined by Rule 2.1 
we always have k3 < k3. 

We are now in a position to state the main results. In order to formulate some 
conditions in a concise manner, throughout this paper we assume that the nonlinear 
operator F is properly scaled, i.e. 

(18) IIF'(x)I <? Vx E Bp(xt). 

This scaling condition can always be fulfilled by multiplying both sides of (1) by 
a sufficiently small constant, which then appears as a relaxation parameter in the 
iteratively regularized Gauss-Newton method. 

Theorem 2.1. Let Assumption 2.1, (5) and (18) hold, 12rKoIIxo - xtll < 1, c > 
25 and let k3 be the integer chosen from Rule 2.1. Then there is a constant C, 
independent of 6, such that for all 6 > 0 

(19) k -xtll < Cinf{ - Xktxt| + k =0,1,... 

where {Xk} is the sequence defined by the iteratively regularized Gauss-Newton 
method (4) corresponding to the noise-free case. 

The estimate (19) is quite useful; from it we can get a lot of information on x 
In particular, we can use it to derive the convergence and rates of convergence for 
the iteratively regularized Gauss-Newton method. 
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Corollary 2.1. Suppose the conditions in Theorem 2.1 are satisfied, and let k6 be 
the integer chosen by Rule 2.1. If xo is chosen such that xo - xt E JVA(F'(xt))', 
then 

(20) ; lim x6 = xt (20) ~~~~~~~~~6-*Ok0 

Moreover, if xo - xt satisfies (6) with some 0 < v < 1, then 

(21) k - x < Cw 1+2v6 1+2v 

with a constant Cv, depending on v only. 

Corollary 2.1 suggests that the iteratively regularized Gauss-Newton method 
together with Rule 2.1 defines a regularization method of optimal order for each 
0 < v < 1 (see [22, 15]). The upper bound provided by (21) is of uniform nature 
without special regard for y. In a typical instance, however, the convergence of x6 

to xt is faster than (21) claims, even under the slight weaker conditions 

(22) j dIEA(xo -)H2 = x(it2v) 

and 

(23) j djIEx(xo- xt)12 = o(Q2v), 

where 0 < v < 1 and {EA} denotes the spectral family generated by the self- 
adjoint operator F'(xt)*F'(xt). These conditions were used first by Neubauer [16] 
to prove the converse and saturation results for Tikhonov regularization of linear 
ill-posed problems. The comparison of (22) and (23) with (6) can be seen from [16, 
Proposition 2.3]. 

Corollary 2.2. Assume the conditions in Theorem 2.1 are satisfied, and let k3 be 
the integer defined by Rule 2.1. Then 

(24) llX66-xtil < f O(6 =v) if xo-xt satisfies (22), (24) I~1xk1 xl (6 1+2) if xo -xt sati'sfies (23). 

All the above results will be proved in Section 5. Some necessary preparation 
will be given in Section 4; in particular, an important inequality, which is the key 
to proving Theorem 2.1, will be presented. Please note results similar.to (19) for 
some regularization methods for linear ill-posed problems have been obtained in 
several references [6, 17]. 

Before concluding this section, let us make a comparison between Assumption 2.1 
and (9). At first glance it seems that Assumption 2.1 is very similar to (9). But in 
fact this is not the case-Assumption 2.1 is always easier to verify than (9). For 
example, we consider the problem of estimating the coefficient a in the boundary 
value problem 

(25) f -\Au+auz=f inQ, 
u = g on oQ, 

from the additional measurement of the normal derivative of u on OQ, where Q is a 
bounded domain in R3 or R2 with smooth boundary, f E L2 (Q) and g E H3/2(OQ). 
Let T be the trace operator T: H2(Q) I-- L2(9Q), To 89I Q, and let G be the 
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parameter-to-solution mapping G: D(G) C L2(Q) _ H2(Q), G(a) = u(a), where 
u(a) is the unique solution of (25) and 

D(G):= {a E L2: la-llL2 < -y for some a > 0 a.e.} 

with a suitable small constant -y > 0. Then we can define the nonlinear operator 
F as F = To G, which is well-defined on D(F) D(G) (see [4]), and the Frechet 
derivative of F is given by 

F'(a)h = -TA(a)-1(hG(a)), 

where A(a): H2 n Ho -- L2 is defined by A(a)u = -Au + au. It has been shown 
(see [14]) that if lu(at)(t)l > 1i > 0 for all t E OQ, then Assumption 2.1 is true. 
However, it is difficult to verify (9) for this example. Indeed, the validity of (9) 
requires T to commute with a family of linear operators, which is impossible in 
general. 

3. NUMERICAL EXAMPLES 

In this section we present some numerical results to test our assertion for Rule 2.1. 
For simplicity we just do the numerical experiments for the parameter estimation 
of ordinary differential equations. In all examples we always choose the stopping 
index k3 by Rule 2.1 with c = 1. Note that c = 1 does not satisfy the lower bound 
25 stated in Theorem 2.1. However, this bound mainly comes from the proof of the 
justification of Rule 2.1 and the proof of Lemma 5.2 (see Section 5). If Rule 2.1 
is well-defined for smaller c and if we check the proof of Lemma 5.2 carefully, we 
can drop the requirement on c provided lixo - xt II sufficiently small. In numerical 
computation, one should use smaller c if possible, since the absolute error increases 
with c. In the following we also make a comparison between Rule 2.1 and the 
discrepancy principle (7); for the latter rule, we also choose c = 1. 

We consider the identification of the coefficient a in the two-point boundary 
value problem 

(26) f ~~~~~-u" +auf t E (0, 1) 
(26) { u(O)=go, u(1)=91, 

from the measurement data u6 of the state variable u, where go, gi and f E L2[0, 1] 
are given. Now the nonlinear operator F: D(F) C L2[0,1] F-+ L2 [0,1] is defined 
as the parameter-to-solution mapping F(a) = u(a) with u(a) being the unique 
solution of (26). F is well-defined (see [4]) on 

D(F) := {a E L2[0, 1]: Ia-allL2 < -y for some a> 0 a.e.} 

with some -y > 0. Moreover, F is FRechet differentiable; the FRechet derivative and 
its adjoint are given by 

F'(a)h = -A(a)-(hu(a)), 
F'(a)*w -u(a)A(a)-1w, 

where A(a): H2nHoH i- L2 is defined by A(a)u = -u"+au. It has been shown (see 
[19]) that Assumption 2.1 and (9) are valid if lu(at)(t)I > tc > 0 for all t E [0, 1]. 

Example 3.1. Here we estimate a in (26) by assuming f = 1 + t2 and 9o = 

g1 = 1. If u(at) = 1, then the true solution is at = 1 + t2. In our computation, 
instead of u(at) we use the special perturbation u3 = 1 + 5V'2sin(107rt). Clearly 
11u' - u(at)IIL2 = J. In order to apply the iteratively regularized Gauss-Newton 
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TABLE l.a. ak = 0.1 x 0.5k-1 

Rule 2.1 Discrepancy Principle (7) 
d kj el = Ilabk, 

- at II el/65/ n6 e2 = | 11an - at II. e216 
O.lOe+0 4 0.26e+0 0.12e+ 1 5 0.19e+0 0.60e+0 
0.lOe-1 7 0.71e-1 0.15e + 1 9 0.29e-1 0.29e + 0 
0.lOe-2 10 0.20e-1 0.20e + 1 12 0.15e-1 0.47e + 0 
0.lOe - 3 12 0.37e - 2 0.17e + 1 15 0.lle - 1 0.lle + 1 
0.lOe-4 14 0.15e-2 0.32e + 1 18 0.56e-2 0.18e + 1 

TABLE l.b. ak = 0.1 x 0.25k-1 

___ Rule 2.1 Discrepancy Principle (7) 
6 kj el = liaki - atIl el 6 / n6 e2 = Ila - atI T e2/61/2 

0.lOe+0 2 0.33e+0 0.15e+ 1 3 0.19e+0 0.60e+0 
0.lOe-1 4 0.72e-1 0.16e + 1 5 0.62e-1 0.62e + 0 
0.lOe-2 5 0.21e-1 0.21e + 1 7 0.30e -1 0.95e + 0 
0.lOe-3 6 0.61e-2 0.28e + 1 8 O.lle -1 0.lle + 1 
0.lOe-4 7 0.21e-2 0.45e + 1 10 0.78e -2 0.25e + 1 

method, we choose the first guess as ao = 1 + t2-2t(1 -t)(1 + t -t2). It is easy to 
know that ao - at E R(FI(at)*Fl(at)) (see [7]), and thus the rate of convergence 
we can expect should be Q(52/3). 

In Tables l.a and l.b we report the numerical results obtained by using Rule 2.1 
and the discrepancy principle (7) with different choices of the sequence {ak}. Dur- 
ing the computation, the differential equations we met were solved approximately 
by the finite element method on the subspace of piecewise linear splines on a uniform 
grid with subinterval length 1 . Considering the discretization error, Tables l.a and 
l.b indicate that ak6 converges to at with a rate 0(62/3) if k3 is chosen by Rule 2.1, 
and only a convergence rate Q(65/2) can be seen for the discrepancy principle (7). 
This numerically illustrates the fact that the discrepancy principle (7) never yields 
a better convergence rate than Q(51/2). At first glimpse, it seems that- Rule 2.1 is 
more time-consuming than the discrepancy principle (7), since an additional oper- 
ator akI + l3k has to be inverted in each iteration step. However, Tables l.a and 
l.b tell us that more iterations, which of course take time, have to be done for the 
discrepancy principle (7) to get the final results. In fact, the computational time 
for the discrepancy principle (7) is slightly longer than that for Rule 2.1 for small a 

in this example. Furthermore, we can see from Tables l.a and l.b that the results 
obtained by Rule 2.1 are better than those obtained by the discrepancy principle 
(7) if a > 0 is quite small. Due to the observation given above, we can recommend 
Rule 2.1 in applications. 

The results in Tables l.a and l.b also illustrate the influence of the choice of the 
sequence {ak}. The sequence {ak } used in Table l.b decreases faster than that 
used in Table L.a, so fewer iteration need to be done to get the final results, but 
the risk of worse convergence perhaps arises. 
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TABLE 2. ak = 0.1 X 0.25k-1 

Rule 2.1 Discrepancy Principle (7) 
a k6 el=IaokiatI n= e2 = Ial6atII 

0.10e + 0 3 0.29e + 0 3 0.29e + 0 
0.10e-1 4 0.22e + 0 6 0.18e + 0 
0.10e-2 7 0.14e + 0 8 0.16e + 0 
0.10e-3 9 0.lle + 0 9 0.lle + 0 
O.lOe-4 10 0.10e+0 11 0.10e+0 

Example 3.2. Here we continue the estimation of a in the problem (26) as de- 
scribed in Example 3.1, but use the first guess ao - 0.5 + t2. Now 

aO - at f R(F'(at)*), 

and in fact ao - at has no sourcewise representation (6) with a good i > 0, so we 
cannot expect a good convergence rate either for Rule 2.1 or for the discrepancy 
principle (7), according to Corollary 2.1 and [3, Theorem 3.1]. However, we still 
have the convergence, which can be seen from Table 2, and the two stopping rules 
yield almost the same rates of convergence; here we choose ak = 0.1 x 0.25k-1. We 
also consider the choice ak = 0.1 x 0.5k-1 for this example; the numerical results 
are essentially the same. 

Example 3.3. Here we again estimate the parameter a in (26), but with 9o = 0, 
91 = 1 and f = t. If u(at) = t, the true solution is at = 1. In our calculation we 
use the special perturbation u6 = t + 6V2Xsin(107rt). As the first guess we choose 
ao = 1 + 0.4(7t2 - lOt4 + 3t6). It can be argued that 

aO - at E R(FI(at)*F'(at)). 

In Table 3 we summarize the numerical results obtained by using Rule 2.1, and the 
discrepancy principle (7) with ak = 0.1 x 0.25k-1 . The convergence rate 0(62/3) 

can be seen for Rule 2.1, and the rate 0(61/2) holds for the discrepancy principle 
(7) again. Note that we could not verify Assumption 2.1 for this example. Thus 
the results indicate that Rule 2.1 has a wider applicability than indicated by the 
conditions of Theorem 2.1. Recently we have obtained some results for Rule 2.1 
under weaker conditions than Assumption 2.1, and more research is in progress 
now. Because of the different framework, we will report them in another paper. 

TABLE 3. aYk = 0.1 x 0.25k-1 

Rule 2.1 2/3 Discrepancy Principle (7) 

6 el = 
liak. - aI e at a n e2 = nI - atl II _____ 

0.lOe-1 5 0.52e-1 0.lle + 1 6 0.46e-1 0.46e + 0 
0.lOe-2 6 0.15e-1 0.15e + 1 7 0.18e-1 0.37e + 0 
0.lOe-3 7 0.41e-2- 0.19e + 1 9 0.97e-2 0.97e + 0 
0.lOe-4 8 0.12e-2 0.26e + 1 10 0.63e-2 0.20e + 1 
0.lOe-5 9 0.34e-3 0.34e + 1 11 0.13e-2 0.13e + 1 
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4. SOME RESULTS ASSOCIATED WITH THE NOISE FREE CASE 

In this section we will give some investigation on the sequence {xk } defined by (4) 
with yJ replaced by y. By assuming Xk E Bp(xt) for some integer k, the definition 
Of Xk+1 gives 

Xk+1 -Xt = (akI + FI(Xk)*FI(Xk)){lak(XO - Xt) 

(27) 
- F/(Xk)* (F(Xk) - y - F' (Xk) (Xk - xt)) } 

Since Assumption 2.1 implies 

(28) F(Xk) - y - F'(xk)(xk - xt) = F'(Xk) j htdt 

with ht = h(xt +t(Xk -xt),xk,xk -xt) and f1htdt? < K?Ixlk xtII2, we have 

from (27) that 

(29) fk o tX-XtI2 < IIxk+-tI < Ko | 12 IlXk 
- X IIXk+1 

- Xt~~~~~~~ II k + yIIXk -XtI 

with 11k IIak(akI + F'(Xk)*F'(Xk)) l(Xo - xt) II. In particular, (29) implies 

IIXk+1-Xt - < ?11xo -xt 11 + 2 Ixk-xtk 2 

FRom this by induction we can show that if K0 Ijxo -xt II < q with a constant q < 1 
then 

(30) IIxk -Xt| < ? 2 
|x-xt|I < 2||xo-xt|I 

for all integers k > 0. Therefore the sequence {Xk} is well defined. 
The next lemma, although elementary, is very useful in the following discussions. 

Lemma 4.1. Let {Pk}%?O% be a sequence of positive numbers satisfying PI < p k= ~~~~~~~~~~~~~Pk+1 
with a constant p > 1. Suppose the sequence {?7k} I0 has the property 

(31) Pk-T?k ?<rk+l < Pk + T7k, k = 0,1, .... 

If rp < 1 and qo < P 
TpPo, then for all k 

(32) 17k < - Pk- 

If in addition, {Pk} I o is monotonically decreasing, qo > po and 2-rp < 1, then for 
all k 

1 - 2r 
(33) 17k 

> 
- rpk* 

Proof. Assertion (32) can be proved by induction. In fact, it is trivial for k = 0. If 
it is true for k = j, then for k = j + 1 we have 

1 _ 1 Pj * < p 
1j + 1 < Pi + rqj<1 i=1 P < <j - _pPj+1 ?7j+i?Pa+TTh?1 -TJJ l-,rPPj+1 -TP 

And hence (32) follows. Assertion (33) is an immediate consequence of (31) and 
(32). 

To continue our study, let us state a consequence of Assumption 2.1. 
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Lemma 4.2. Let Assumption 2.1 hold. For each pair u, v E Bp(xt) we denote 
A = F'(u)*F'(u) and B = F'(v)*F'(v). Then, for all a > 0, 

(34) |a ((aI + A)-1 - (aI + B)-1) ?| < 2Kollu - vil. 

Proof. Let a, b E X be arbitrary. Then by Assumption 2.1, 

l(a((aI + A) - (aI + B))a, b) 

< Ia((aI + A)- 1F'(u))*(F'(u) - F'(v))(aI + B)-1a, b) 

+ Ia(F'(v) (aI + B)1a, (F'(u) - F'(v)) (aI + A) b) 

= Ia((aI + A)-1 Ah(v, u, (aI + B)-'a), b) 

+ Ia (13(aI + B)-1a, h(u, v, (aI + A) b)) 
< 2KoIu -vll Ilall llbll, 

which gives (34) immediately. DH 

Now we introduce some notation by defining 

C:= F'(xt)*Fl(xt), D:= FI(xt)FI(xt)* and Ak:= F/(Xk)*F/(Xk) for all k. 

This helps make our statements more compact. Obviously, these operators are all 
self-adjoint and nonnegative definite. 

Lemma 4.3. Let Assumption 2.1, (5) and (18) hold and 12rKoIxo - xtI < 1. 
Then, for all k, 

(35) f30k ?< IXk - Xt I <3rfk, 

(36) 2lXk - XttH <K fIXk+1 - Xtt < 21Xk -X ||, 

where fk is defined by fk := Ilak(akI + C) 1(XO- Xt) 11 

Proof. Since x0 = xt implies xk = xt, assertion (35) is trivial. Therefore in what 
follows we assume x0 7& xt. 

With an application of (34) we have if3 k I < 2Ko Ixo -Xt II Xk - xtH. Hence, 
noting that 12rKoIxo - xtl < 1, from (29) and (30) it follows that 

(37) 1k- 4 - lXk-Xt|| < IIXk+1-Xt|| < ik +1 4lXk- XtII 

Let {EA} be the spectral family generated by C. Then 

J00 
(38) ?~~o ( kai) J EA~ dixEA_xo-txt112 

pk = X (A + ak 
)2 EA+ 1)2 

(38) < 
a 
?k 

2 

cX 
a2 

2d|A(oX)| 

* r2ok2+1 

Since (18) implies IIxo - x > io > 4 xo - xt 1l, from (37), (38), the monotonicity 
of {/3k } and Lemma 4.1 we can obtain (35). Assertion (36) is a direct consequence 
of (35) and (37). DH 
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Now let us digress a moment and give some converse and saturation results for 
{Xk} by using Lemma 4.3. As we know, it has been proved in [3] that 

(39) ||Xk 1- X1 < 0(ak) if 0<v < 1, 

if x0 - xt satisfies (6). Now we wonder whether (6) is necessary to derive (39) and 
whether O(ak) is the optimal rate. Neubauer [16] has pointed out that (6) is not 
necessary for the expected rates in general for Tikhonov regularization of linear 
ill-posed problems, and instead of (6), he has used the characterizations (22) and 
(23) of the true solution. In the following we use the recent results in [16] to show 
that (22) and (23) are necessary to derive the corresponding rates in (39), i.e. we 
have 

Proposition 4.1. Under the assumptions in Lemma 4.3, some converse results for 
{Xk} hold, i. e., 

(40) IlXk - xtjI = 0(ak) X='- Xo - xt satisfies (6) with v = 1 

and, for 0 < I < 1, 

(41) I1xk - X = O(a) x xo - xI satisfies (22), 

(42) jlxk - oa= o() x xo - xI satisfies (23). 

Moreover, the saturation result holds: 

(43) I1xk - X - || = o(ak) ='- Xo = Xt. 

Proof. Let us prove (41) first. Obviously (35) has the immediate consequence 

(44) IXk -XI = O(a') 4 k = 0(a'). 

Now suppose /k = O(a') with some 0 < v < 1. Since for any 0 < a < ao there 
exists an integer k such that ak+1 < a < ak, we have a < ak < ra and 

~a(I+C1(o ~xt)2 j 2 k )dlE oxt)Hl2 
X (a + A)2 dIE(xo - ) 112 

00o 2 

ak2 ~ 2 < 10dIlEA)2 Ak doE-(x 
(ak1 +Ak+2+ 

< r 2o2 = O(aov) = O(a2v) 

Therefore we have in fact shown that 

(45) Ak = O(av) '?" |a(aI + C) 1(xo - Xt) - (av), 

since the other direction is obvious. The combination of (44) and (45) gives 

Xk - XI O( av) a 'a(aI + C) (xo - xt) = O(av). 

Thus [16, Theorem 2.1] can be used to obtain (41). Assertions (40) and (42) can 
be proved in the same way. 

Using the same argument in the above, we also have 

||Xk -XI| = o(ak) = 11a(aI + C)1(xo - xt)| = o(a). 

Therefore by using [9, Theorem 3.2.1] we can obtain (43). DH 
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Now we can give the following inequality, which plays a significant role in the 
proof of Theorem 2.1. 

Lemma 4.4. Let Assumption 2.1, (5) and (18) hold and let 12rKO lxo - xt 11 < 1. 
Then, for all integers k > 1 > 0, 

(46) lxi -xtll ?0 {IIXk -Xt11 + 2a(alI +D)-'(F(xi) -y)} 

with a generic constant Co independent of k and 1. 

Proof. We first consider the case 1 > 0. By setting k in (27) to be k - 1 and 1 - 1, 
respectively, and then subtracting them, it follows that Xk - xl = Ql + Q2 + Q3, 
where 

Q := {k-1 (ak1I + Ak-1)1 - al_(ali_I + A1)-1 } (xo -xt), 

Q2 (acl_I + Al4l)-i F'(xl-)*(F(x1i) - y - F'(x1-1)(x11 -xt)), 

Q3 := (ak-1I + Ak-1)F(Xk-1)*(Y - F(xk-1)- F'(Xk-1)(Xt - Xk-1)). 

By using Assumption 2.1 and (30) and noting that Kollxo - xtll < 12r we can 
obtain, with T := V6/ (v6 + V6-r-1), 

(47) IIQ2 11 <KoHxi 1 -xt2 ? ToXo Xt 

(48) HIQ311 < 2KO|Xk-1 - xtH2 ? TKoHXo - xtl H|xk 1 - xt| 

And from (34) we also have 

IIQ, 11 < IIJII + Ila,-, ((al-1I + A1-1>1 - (al_-I + C)-1)(xo - xt) 

(49) + Ilak-1((ak-1I + Ak-1<1 - (ak-1I + C) )(xO- xt)I 

< IIJII + 2Kolixo - xtil(llxk-1 - xtil + Ilxll - xtIl), 

where J:= (al_1(al_iI + C)-1 - ak-1(ak-1I + C)-1) (xo - xt). 
Combining (47), (48) and (49) gives 

(50) |lXk -Xl ?< HIJH+(2+T)Kollxo-xtH| (Hlxk1 -xtll+Hlxll -xtH|) 

Next we estimate J. By introducing the notation 

J, al- (ak-1I + C>1'Fl(xt)*(F(xi) -y) 

- ak-1) (ak- 1 I + C) - 1 F'(xt)* (F'(xt)(xi - xt) - F(x1) + y) 
ael-l 

J3 = a(k-1- (ak _ 1 I + C) 
- 

C (al-_ 1 (a,1 - 1 I + C ) (xo -xt) )- (xi- xt) ) 

we have J = J1 + J2 + J3. Obviously Assumption 2.1 and (30) imply 

(51) KoJ2H K? I - xt112 < TKoIIXO - xti iX, - xt 1. IJ1<2 IX 
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By inserting the expression of Xl - xt (i.e. (27) with k = 1 - 1) into J3 we have 
from Assumption 2.1, Lemma 4.2 and (30) that 

11J3 11 < llal--(ael-I+C)-Y(xo-xt)-(xi-xt)I 

? lla'l_-((ali-I + C)-1-(a(la-I + Al-l)-i)(xo-xt)I 

(52) + ll(acl_I + AIl-)-lF'(xl-,)*(F(xl) - y - F'(xl-)(xll-xt)) 

? 2KolIxo - xtIIIIxi i -xtii + K0llxl_l-xt 12 

* (2 + r)Kolxo -xt 1 l1x1- 1 -Xt. 

To estimate the term J1, we use the abbreviations 

IC:= (ak1lI+C)-2FI(xt)* 

and 

(al-i (aek-1I + Z)) (al_-1I + 19) 

and write J1 as 

J1 = t l - ak 1 ) CLa 2_ (a,-,1I + D)-2 (F(xi) - y). 

Let {EA} be the spectral family generated by D; then for any v E Y we have 

11CV112 = aJ-1 (ak-1 + A) dI, Evll 2 

Since a,-, > ak-1, the function 

g Q): k-l@aI-1 + A) 
g(A) al- 1 (akl1 + A) 

is monotonically decreasing on [0, oo) and attains its maximum 1 at A = 0. There- 
fore 

2lvlV ? J d< Ev112 = VI Vv Y. 

This implies JILIJ < 1. By the same procedure we have IIKI] < 1. Hence 

1l ?l 1 ki IIa ?1ela(2al- 1 I + D) (F(x1) - y)II. 

Similarly to the deriviation of (38), we have 

IIa?l- 1(al-_iI + D)< (F(x1) -)II ? ry II1 a (alI + D)- 1 (F(xi) - y) 
Therefore, by noting that ak < ak-1 it follows that 

(53) 11Jill < llIa 2(alI+D) !(F(xl)-y)ll 

Thus the combination of (50)-(53) gives 

||Xk -xl 11 < H I|a? (a,I+D) 2(F(xl)-y)ll + (2+T)Kollxxo-Xt || |Xk-1 Xt || 

+ (4 + 2T)KoIxo - xtIIx 1 x -x tI + TKoIIx 0 - xt II- x t. 



THE ITERATIVELY REGULARIZED GAUSS-NEWTON METHOD 1617 

Noting that 12rK0llxo - xtjj < 1, Lemma 4.3 can be used to obtain 

|lXk - Xl a < 
- 7(aI+ D) <(F(xi)-Y)- 6 |xk-cxtH| 

+ (T + 2 ) lxi-xt 1. 
12r 3 

Since jr + r2 < 1 assertion (46) follows. 
For the case I = 0, we can assume k > 1. Since (46) is valid for I = 1, we can 

use (36) to assert that (46) is also true for I = 0. L 

5. PROOFS OF MAIN RESULTS 

In this section we shall prove Theorem 2.1 and its corollaries. The proof is based 
on Lemma 4.4 and other two auxiliary results given below. The first concerns 
the stability estimate for the iteratively regularized Gauss-Newton method. It is 
obvious that x -* Xk as 6 -* 0 for each fixed k, which can be confirmed by 
induction since Assumption 2.1 implies the continuity of the mapping x ~-* F'(x) 
on Bp(xt). This, however, is not sufficient for our purpose, we hope to obtain a 
finer estimate on 1X6 - X/kll. The following result gives a satisfactory answer. 

Lemma 5.1. Let Assumption 2.1 hold, 12Kojjxo-xt11 < 1, and let k6 be the integer 
defined by (12). Then, for all 0 < k < k6, 

(54) 114 - Xk 11 < 

Proof. Since (54) is trivial for k = 0, therefore if we can establish the estimate 

(55) 6x +- Xk+1 11 < 1j+ 2 ||x- Xk| II~/+1~~/c1II 2 Va/c- 2 

for all integers 0 < k < k6, then the proof can be complete by a simple application 
of Lemma 4.1. 

To prove (55), we subtract (27) from (14), to obtain 

(56) 

Xkl - = ((CkI + Ak) 1F (Xk)*Uk - (aCkI + A6k)1F(x6)*u6) 

+ak ((a/kI + A)1 - (akI + Ak) 1) (Xo- Xt) 

+ (ak/I + Ak) -F(x) *(y -y) 
-:11+12+ k3k =:Il + I2 + I3 

where we used the abbreviations 

Uk = F(Xk) -y- F (Xk)(Xk - Xt) 
U/ = F(X) - y - F' (x6)(x6 - xt), 

In what follows we estimate the three terms I,, I2 and I3. Obviously we have 

3 
(57) HI2H ?1<2Ko lxo -xt 114 -Xkc1 III311 2 a/ 
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here we used (34) to obtain the first estimate. To estimate I1, we write 

Il = {(aCkI + Ak) / FI(Xk) - (CtkI + A6k) FI(4)*u/} 

+ (aCkI + A6)lFF(x4)*(Uk - U) 
=: (1) + I (2) 

Since Assumption 2.1 implies 

(F'(x6) - F(Xk))(Xk - Xt) = FI(x6)h(Xk x6/,xt - Xk) 

and 

(58) F(xk)- F(x6) - F(x)(xk - X) = Fl(4) j m6dt 

with m =h(4?t(xc-x ),x6,x/-x6) and f|mMdt <'||x/-x6112,we can 

obtain 

||I( )|| ? |(c'kI + A)-lA6 (h(x/cXk, X - Xk) + j m6dt) 

< -(2|Xk - XtI + IX6k - Xk/c)||X6k - Xk 

By applying (28) and Assumption 2.1 we also have 

If1) = ((akI + Ak) -1 A/-(ac + A6)lA6) j htdt 

1~~~~ 
+ (a/kI + A6k)-lFl(x)* j(F'(x6) - F'(xk))htdt 

= a,k {(a,kI + A6)-1 - (a/kI + Ak)} htdt 

1~~~~~ 
- (ackI + AS)- A J h(xk, 4 ht)dt. 

Hence the application of (34) gives 

(0III(1 ?< 2KoHIx6- Xkll htdt + h(xk,xk,ht)dt 
(60) J3 

< Ko2 IXk - Xt 112 - X6 -Xkll| 

Combining (59) and (60) and noting that 12Kollxo - xt 1 < 1, from (17) and (30) 
we have 

(61) HIII, < 4Kolxo -x IlXtXk - Xk1. 

Now (55) follows from the combination of (56), (57) and (61). L 

Our next auxiliary result contributes to the estimates of some terms. 

Lemma 5.2. Let Assumption 2.1 hold, 12Kolxo - xt11 < 1, c > 25, and let k6 be _ -4' 

the integer determined by Rule 2.1. Then 

(62) ak/c (F(Xkc) -y, (a I + D) (F(xk/c) -y)) < c 

Moreover, if k6 > 0 then for all integers 0 < k < k6, 

(63) ak/(F(Xk) - y, (ak/I + D) (F(xk) - y)) ? c2j2, 
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where 

3 ~~12(\/Fc- 1) 12V -) 
C1 = 4(/+?2+ r2\E ) arnd c2:= ( 2-1 .1) 

-~~~ - 

Proof. Let k6 be the integer defined by (12); then k6 < k1c. By using (58) and 
Lemma 5.1 it follows that, for all integers 0 < k < k6, 

V'-ll(akI+ ?k) 2(F(Xk)-F(xk))II < a(1+ 2 IIx -xkII) IX'-XkII 

< (1 + ? )6. 

Since the definition of k6 and (5) imply 

6 r2?6 2r2lIxo-xt II 6 21Ixo-xtII < < 
v/_and 

< 

for all 0 < k < k6, we have for 0 < k < 

4a4I(k I+13 )-(F(x4,) - F(Xk3))II ? ( 2(A- 1)) 6 

/a11(akI + Ik)-2 (F(xk) - F(Xk))II ? ( 12( -1)) 6. 

Thus we can use the definition of k6 and (2) to obtain for 0 < k < k6; that 

(64) ;akI(ak6 I + I 36I? ) 2 (F(Xk) -Y)II < (v' + 2 + 12( 1)) 6, 

(65) akIIl (aklI?+ Bk) 2 (F(Xk) - Y) ? >2 12(-1) 6 

Let us now introduce for 0 < k < k6 the notation 

ak aOk(F(Xk)-y,(akI?+Bk<)-(F(Xk)-Y)), 

bk ak(F(Xk)-y, (akI + D)<(F(xk)-Y)). 

Since (17) implies KoIllx - xt II < 3KoIIxo - xt II < 1, we can exploit [19, Lemma k ~ ~ ~ ~-4' 
3.6] to obtain 

lak - bkl = lak(F(Xk) - Y, ((akI + Bk)1 - (akI + D)>1)(F(Xk) -))| 

= Iak(F(Xk) - y, (akI + D) 1(D- 3)(kI ? Bk) (F(xk)- 

= lak((akI + D) 2 (F(Xk)y), (akI + D) 2( B)(akI + B)2 

x (akI + B)k (F(Xk) - Y)) 

1 r F(k 

< 2ff(K |ak-IX t || || (akI + D) 2((k-)| 

x ||(akI + B"k) (F(Xk) - Y) 

< ak {(F(Xk) - y, (akI + D)-1(F(xk) - y)) 

+ (F(Xk) - y, (akI + I3) 1(F(Xk) -Y)) 

= 1 
- (ak +bk), 4 
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which implies 5bk /< ak < 5bk. This together with (64) and (65) gives the desired 
results. 

Now we are ready to give the proofs of Theorem 2.1 and its corollaries. 

Proof of Theorem 2.1. Since 

Vti> +/ > , l llxo-xt11 

for all integers k > k6, and since llx6 -xtl < 3Hxo-xtH, we need only to prove 
there is a constant C > 0 independent of 3 such that 

-xt < C inf :lXk-Xt || + 0 < k < k6 }, 

which, using Lemma 5.1, can be confirmed by showing that for all integers k < k6 

(66) 6Xc6~ <?C{xc t? (66) ||~~IXk,, 
- Xt || + <~ C {lXk 

- Xt II+ ; 

In the following, we carry out the proof of (66) by considering the two cases k6 < 
k < k6 and 0 < k < k6 separately. 

(i) For the case k6 < k < k6, we obviously have 3/1a/c6 < a/c. Since (62) 
implies 

Ila2Ok,,(ak,,I + D)--2 (F(Xk,, )-Y)I ||< C1 6, 

we can use Lemma 4.4 to obtain 

IlXkX -Xt|| <?Co {CxO cxtk +- C1 } 
Therefore (66) is true for this case. 

(ii) Next we consider the case 0 < k < k6. By using the well-known fact that the 
function a -+ Ila(aI + C)-1(xo - xt)H1 is monotonically increasing on [0, oo), from 
Lemma 4.3 we have for all integers I > m that 

llxl- xtHl < 4ral a(alI + C)>1(xo -xt) 
-3 

4 
(67) < -r ace(c(aI + C)1 (xo - xt) 

3 
< 2rllx, - xt I, 

which in particular implies 

(68) |lXk/ - XtI < 2rlxlk - Xt 

Since 12rKo IIxo - xt < 1, we can exploit (63), (67) and Assumption 2.1 to obtain 

C23 < ak,1 (ak-1 I + D) 2(F(xk - 1)-) |Y)| 

K ak6111(CaslI + D)-2F'(Xt)(Xk/1l-Xt + htdt)H 

Ko~~~~~~~~~~ 
K a/c6i(1 + 2 -lXk, -1 - Xt||)||Xk/-1 -Xt1 | 

< a/ckl(1 + Kollxo - xt 1)lXk/- 1 - xtll 

12r* + r2 a/c6Hx/-x|, K ik,IXk-X I 60 
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where ht := h(xt + t(Xk6l - xt) xt, Xk, 1 -xt). Clearly, this implies 

(69) 6 <12X + Xt11_ | 

Va-k6 6C2 

The combination of (68) and (69) gives the proof of (66) again. O 

Proof of Corollary 2.1. We first prove assertion (20). By using (35) we can write 
(19) in the following form: 

(70) 

IIX6 _xtII<Cinf {Iak(akI+C) 1 (x t )? k =6, 1,... . 

Here and later C denotes a generic constant independent of 6. If we choose ma to 
be the first integer such that am<; < 6, then 

(71) 4 -xtI < C {lam, (am,I + C)<1(xo -xt)jj + m6 

Since ma -* oo as 6 - 0, we have 6/ Vam -* 0 and Ia.m(a.,mI + C)1(xo - xt) 
- 0. Therefore x46 xt which follows from (71). 
To prove assertion (21), recalling the well-known fact that 

(72) ||cak(akkI + C) (ox) <ll?k 

if xo - xt satisfies (6) with 0 < v < 1, we have from (70) that 

1146^ -xtIl < Cinf [ |IIw + a k = 0,1,... 

This suggests that if we choose the integer kl to be such that 

v? 1 6 V 
a 2< < ak , 0 < k < kb 

then 

Xt< C6 < C 1 CIIwIIl+2v61+2w, 114' -x'I<C < 

and the proof follows. O 

Proof of Corollary 2.2. If xo = xt, then (70) says that llx4 -xtlI < 0(), and the 
assertion is trivial. Therefore in what follows we assume xo t xt. We choose ma, 
to be the first integer such that 

(73) Vain-6< -x"I <6 

The existence of ima3 is guaranteed because the sequence {Pk} := { ak IIxk - Xtl } 
has the property Pk -? 0 as k -* oo. Moreover we have m -* oo by an easy 
exercise. With this im- we have from (19) that 

(74) 1k4 -xt < C6 < C6 

By using the notation cv(k) := IlIXk -xtila/, from (73) it follows that 
1+2t/ 

( 6'\ ~~~~2 
affi,6 -1 >? 

v 
-f - 2 
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Therefore (74) gives 

(75) llx6^-x~~~t II < CC, (ma-5 _1) 1+2 6 12 (75) k- < 1- v1+v 

Since mfia -* oo, by using Proposition 4.1 we have c,(ffi6 - 1) = 0(1) if xo - xt 
satisfies (22), and c,(ffi6 -1) = o(1) if xo - xt satisfies (23). Therefore (75) implies 
(21). 
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